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Simple Summary: Trapping particular small mammal species is frequently used for scientific pur-
poses but unnecessary bycatch can occur. Live trapping conducted over the last decade in Ger-
many using Ugglan multiple capture traps in grassland, forest and margin habitats revealed about
30% bycatch when target species were common voles (Microtus arvalis) in grassland and common
voles and bank voles (Clethrionomys glareolus) in margins and forests. This was more pronounced
in spring and along margins. Species mentioned on the early warning list according to the Red List
Germany were higher in numbers and proportion in spring and in grassland. The results of the study
will help to avoid periods with enhanced presence of bycatch including endangered species (if the
purpose of the study allows) or to pay particular attention in certain seasons and habitats when the
occurrence of bycatch is most likely.

Abstract: Trapping small mammals is frequently used to study the dynamics, demography, behavior
and presence of pathogens. When only particular small mammal species are in the focus of interest,
all other species are unnecessary bycatch. We analyzed data from extensive live trapping campaigns
conducted over the last decade in Germany, following a consistent standard trapping protocol that
resulted in about 18,500 captures of small mammals. Animals were trapped with Ugglan multiple
capture traps in grassland, forest and margin habitat. Trap success and the proportion of bycatch
were about 30% when target species were common voles (Microtus arvalis) in grassland and common
voles and bank voles (Clethrionomys glareolus) in margins and forests. This was more pronounced
in spring and along margins. Species mentioned in the early warning list according to the Red List
Germany were higher in numbers and proportion in spring and in grassland. The results will help to
avoid periods with enhanced presence of bycatch, including endangered species (if the purpose of
the study allows) or to pay particular attention in certain seasons and habitats when the occurrence
of bycatch is most likely.

Keywords: conservation; non-target species; endangered species; rodents; Ugglan traps; voles

1. Introduction

Capturing wildlife is important to humans as wild animals are recognised as a source
of nutrients and material for shelter, tools, medicine and cultural objects, etc. For millennia,
wild animals have been vital in the process of domestication, for support in hunting and
herding, lifting and transporting objects and other work, religious rites and as guards,
as well as companions. The importance of wildlife in these aspects was later supple-
mented by the relevance of wildlife in research. In many cases, the species required needs
to be obtained.

While capture for food does not necessarily require the animal to stay alive, their use
for observational studies does. In some aspects of research such as the study of animal
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populations, there is an obvious need not to disturb the object of study by unduly removing
individuals [1]. In the last few decades, more and more emphasis has been put on the
welfare of wildlife in research, including when trapping animals in the wild [2,3]. For
research purposes, target animals should be placed in optimal conditions during the process
of capturing, handling and releasing or transferring to research facilities, not only to ensure
the welfare of animals [4] but also to ensure the validity of the research results obtained
with them [5].

Rodents are the most species-rich mammalian order, with more than 2500 recent
species [6]. Today, rodents are used for human [7,8] and animal food [9], pelts [10], enter-
tainment [11], as pets [12,13] and, probably most importantly, for research [14,15]. Some
rodent species are significant pests [16] and some can host and transmit zoonotic diseases
to humans, pets and livestock [17]. Several rodent species are (critically) endangered
or vulnerable [18].

Rodents are by far the vertebrate taxon most often bred and captured for research
purposes. Wild rodents are obtained by live trapping and transferred to holding facili-
ties (laboratories, enclosures) for various studies of their biology and ecology, including
behavioural aspects [19,20] and risk assessment [21,22]. Others are trapped and released
in situ for monitoring population dynamics [23,24], dispersal [25] or the epidemiology of
rodent-borne pathogens [26,27].

Small mammals of a similar size to target species such as passerine birds, amphibians
and reptiles are reported as bycatch in kill trapping [28,29] and live trapping [30,31]. Such
bycatch can yield additional information as a rare, invasive and/or unseen/new species
may be detected, but studies considering particular target species usually aim to minimize
bycatch. While the death of animals is inevitable by design in kill traps, target and non-
target animals may also die in live traps [32,33]. This can be due to fatal stress, bait
that cannot be utilised by bycatch species or aggressive encounters between target and
non-target animals caught in the same trap [34,35].

Attempts made to minimise bycatch include the choice of bait [36,37] and trap type
most suitable for the target species [38,39], as well as optimal trapping location [40,41], opti-
mal spacing [42,43] and signalling devices that allow for swift trap checks after capture [44].
In addition, modifications are made to reduce the accessibility of traps for non-target species
such as a cover to exclude birds [45], trigger weight adjusted to the weight of the target
species [46] or structures for escape [30] such as a “shrew hole” to let shrews escape [47,48].

Alternative methods to trapping that prevent bycatch include structures to sample
hair [49,50] or scats [51], wildlife cameras [52] or indices of abundance that do not rely
on trapping such as burrow counts [53], track counts [54,55], genetic methods based on
non-invasive sampling methods [56] or chew cards and monitoring blocks [55,57].

However, in many circumstances, live trapping is the gold standard and often cannot
be replaced by alternative methods. With live traps, often more individuals and more
species can be captured than with snap traps [58,59]. Therefore, live trapping will remain
the main method in studies of small mammals, be it for monitoring or the investigation
of their population dynamics, demography or behaviour, while the study of associated
pathogens often requires organ samples and the use of kill traps.

There is only limited knowledge through systematic and comprehensive long-term
study of bycatch in live trapping. We analysed bycatch in live trapping data collected in
Germany using Ugglan multiple capture traps over the last decade. Target species were the
forest-dwelling bank vole (Clethrionomys glareolus syn. Myodes glareolus) and the grassland
species common vole (Microtus arvalis). Both are small rodent species that are widely
distributed across large parts of Europe [60] and regions in the western part of Asia [6].
The multi-annual dynamics are similar and characterised by population outbreaks every
2–5 years [61]. During outbreaks, common voles cause massive damage in agriculture
and forestry throughout Europe [62], while large bank vole populations can cause dam-
age in forestry [61] and increase the risk of transmission of Puumala orthohantavirus to
humans [63,64]. For a better understanding of the patterns and processes related to out-



Biology 2022, 11, 1806 3 of 17

breaks, and to inform stakeholders in plant protection and health protection about the risks
associated with outbreaks of these species, research and monitoring using live trapping
are conducted regularly. Here, data from past trapping campaigns were re-analysed in
order to gain a better understanding of patterns of the occurrence of bycatch. The effects of
habitat, season and Red List status of non-target species were considered to identify when
and where researchers should pay particular attention to minimise bycatch.

2. Materials and Methods
2.1. Field Sites

In four different studies, we used study sites totalling 28 forest, 8 grassland and
23 field margin habitats in six federal states of Germany (Table 1, Figure 1). All sites were at
least 0.2–2.2 km apart from each other. Forest habitats were mainly beech forests or mixed
deciduous forests dominated by beech (Fagus sylvatica), oak (Quercus spp.) and hornbeam
(Carpinus betulus). Some forest sites were located at forest edges with dense understory
vegetation. Grasslands were sown with perennial commercial seed mixes mainly used to
produce fodder, including silage for dairy cattle or for grazing livestock. Margins were
mostly hedgerows consisting of various woody species and shrubs that separated different
arable fields or grasslands.
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Table 1. Number of study sites, number of trap nights and number of captures of small mammals in Ugglan live traps from four studies conducted 2010–2021 in six
federal states of Germany Baden-Wuerttemberg (BAW), Mecklenburg-Western Pomerania (MWP), North Rhine-Westphalia (NRW), Thuringia (THU), Bavaria (BAV),
Lower Saxony (LOS).

Study Years Federal State
No. Study Sites No. Trap Nights No. Captures

Forest Grassland Margin Total Forest Grassland Margin Total Forest Grassland Margin Total

# 1 16 8 2 26 39,788 11,172 4067 55,027 9851 1482 519 11,852
2010–2014 BAW 4 3 0 7 9898 3675 0 13,573 2778 612 0 3390
2010–2013 MWP 3 1 2 6 8330 2107 4067 14,503 2036 318 519 2873
2010–2015 NRW 4 3 0 7 9506 3675 0 13,181 2074 181 0 2255
2010–2013 THU 5 1 0 6 12,054 1715 0 13,769 2963 371 0 3334

# 2 2019–2021 NRW 12 0 0 12 27,500 0 0 27,500 5166 0 0 5166

# 3 2020 BAV 0 0 9 9 0 0 430 430 0 0 937 937

# 4 0 0 12 12 0 0 448.5 448.5 0 0 503 503
2020 BAV 0 0 4 4 0 0 148.5 148.5 0 0 254 254
2020 LOS 0 0 8 8 0 0 300 300 0 0 249 249

Total 28 8 23 59 67,538 8109 4945.5 83,355.5 15,017 1482 1959 18,458
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2.2. Trapping

We used Ugglan live trap models No. 1 and No. 2 (Grahnab, Gnosjö, Sweden) for
trapping small mammals between March and November in 2010–2015 and 2019–2021. The
Ugglan multi-capture live trap is frequently used in small mammal research all over Europe
(e.g., [24,39]). The trap is made from wire mesh with a removable plastic floor for insulation
and easy cleaning and an aluminium cover for weather protection. The trap is large enough
to hold more than one small mammal and is usually equipped with bait and bedding. In
studies 1 and 2 (Table 1), we arranged Ugglan live traps in grids of 7 × 7 (49) and 5 × 10 (50)
traps with trap spacing of 7–10 m. In studies 3 and 4, we used 20–30 traps in 2–4 trap-lines
2–10 m apart and trap spacing of 10 m within lines. We pre-baited traps for 1–3 days before
activating traps. In studies 1–2, bait was rolled oats supplemented with peanut curls, apple
slices and rodent chow pellets and bedding was wood wool. In studies 3–4, bait was rolled
oats, olive oil and dried mealworm supplemented with slices of apple, cucumber or carrot
when temperatures were high and bedding when temperature was low.

In studies 1 and 2, live traps were set for three to four consecutive days and checked
every 10–12 h, always around sunrise and sunset. In studies 3 and 4, we placed live traps
for three consecutive nights, and set them each night for about six hours around sunset
or sunrise. Within the six hours, taps were set and checked every 90–120 min. Animals
were released at the point of capture. For the purpose of this analysis, we defined the bank
vole and the common vole as the target species in forests and margins and the common
vole as the target species in grassland. Both species are important model species in various
scientific studies and in monitoring to assess the risk of rodent damage in forestry and
agriculture or the risk of transmission of Puumala Orthohantavirus from bank voles to
humans. However, the original studies might have targeted not just bank voles or common
voles but other small mammal species as well. All other captured species were defined as
non-target species for the present analysis.

2.3. Data Analyses

We analysed 18,458 captures of small mammals from 59 study sites obtained in 83,355.5 trap
nights in nine years (Table 1). Only trapping occasions that yielded ≥ 5 captures were consid-
ered for analyses. We defined trap night as a period of approximately 12 h between trap checks
independent of the time of the day (studies 1 and 2). A period of six hours between trap checks
as in studies 3 and 4 was regarded as 0.5 trap nights.

The number of captures and the proportion per taxon, site and session was calculated
as well as the number (captures per 100 trap nights [TN] [65] rounded to integers) and
the proportion of non-target species in captures for each study site and trapping session.
The Red List Germany (https://www.rote-liste-zentrum.de/en/Download-Vertebrates-
1874.html accessed on 20 December 2021) [66] was used to allocate taxa according to Red
List status. The proportion of captures of species on the early warning list (for simplicity
labelled “endangered” throughout the manuscript) per site and session was calculated.

The effect of season and habitat on trap success and proportion of captures per taxon,
non-target captures and red list status were assessed with program R, Vers. 4.1.1 [67].
Effects of the ecological factors habitat (forest, grassland, margin) and season (spring,
summer, autumn) were analysed using generalised linear mixed models (GLMMs). Models
were fitted by maximum likelihood estimation via Template Model Builder and Laplace
approximation for the integration of random effects using the R-package glmmTMB, Vers.
1.1.2 [68]. If necessary, a zero-inflation model was included. Proportions were fitted with a
binomial family and trap success was fitted using a negative binomial family to account for
overdispersion in the count data. For each parameter, the model with the best fit according
to the Akaike’s information criterion (AIC) [69] for fixed and random effect structures and,
if applicable, zero-inflation formula was selected. The validity of the chosen models was
checked by graphical evaluation of the normality of the residuals, the linearity between
response and predictors, the independence of residuals and the calculation of the variance

https://www.rote-liste-zentrum.de/en/Download-Vertebrates-1874.html
https://www.rote-liste-zentrum.de/en/Download-Vertebrates-1874.html
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inflation factors (VIFs). As the models contained interaction terms, VIFs could be expected
to be high for some terms.

The final GLMMs for the proportion of non-target species included the explanatory
variables habitat and season and their interaction. Year and study site nested per study
were selected as random intercepts to account for repeated measurements and possible
clustering of data along these factors. To assess the proportion of endangered species, the
final GLMM included the interaction of all explanatory variables (habitat, season) and
the random intercepts (year and study site). Figures were produced with the R-package
ggplot2, Vers. 3.3.5 [70].

There were differences in the aim and design of studies 1–2 vs. 3–4 (see above). Studies
3–4 focussed on shrews in margins in spring and summer with frequent trap checks. This
resulted in higher trap success, more Cricetidae and more non-target captures than in
studies 1–2 that also covered seasons with low occurrence of Cricetidae. For the statistical
analysis this is not ideal because even a simple calculation such as the mean per season
can be skewed. An apparent temporal trend indicating low trap success in autumn is
deceptive, because it is simply due to the missing data from studies 3–4. However, GLMMs
are able to incorporate such misbalanced data. The study was included as a random effect
and therefore the model includes the variability between the studies in calculations and
predictions. Therefore, the results of the analysis of trap success per taxon and of non-target
species captures are presented based on the model predictions and not as mean values. For
the other variables, arithmetic means ±standard errors are reported throughout. For all
analyses, the level of statistical significance was set to α < 0.05.

3. Results

During live trapping sessions in forest, grassland and margins, 18,458 small mammals
of at least 15 species of four mammalian families were recorded (Tables 1 and 2). No other
vertebrate species was trapped.

Trap success (captures per 100 TN) was highest in margins (40.0), followed by forests
(22.3) and grasslands (13.3). In spring, the overall trap success was lowest (18.0) and it was
highest in summer (26.7, autumn: 21.3) (Tables 2 and 3). In combination with habitat and
season, trap success was highest in margins in spring (62.9) and lowest in grassland in
spring (5.7) (Table 3).

On average, 34.1 (±2.8) Cricetidae, 11.6 (±2.0) Muridae and 3.0 (±0.4) Soricidae were
captured per 100 trap nights. The data contained many zeros and therefore the GLMM
included a zero-inflation model. The model showed that Cricetidae were trapped twice
as often as Muridae (p < 0.05) and 4.5 times as often as Soricidae (p < 0.05). Cricetidae
were trapped 1.8 times more often in forests than in grasslands and margins (p < 0.05)
(Figure 2a–c). For Muridae and Soricidae, trap success did not differ between habitats.
According to model predictions, trap success of Cricetidae was 2.5 times higher in summer
and in autumn 1.9 times higher than in spring (Figure 2a–c). In contrast, trap success of
Muridae in summer was half as high as in spring (p < 0.05), but was similar in spring and
autumn. Trap success of Soricidae in summer and autumn was at least 1.5 times higher
than in spring (p < 0.05). Soricidae were more likely to be completely absent than the other
two taxa (p < 0.05), and more likely to be completely absent in spring than in summer or
autumn (p < 0.05).

The average proportion of Cricetidae was more than 5-fold higher than of Muridae and
Soricidae (p < 0.05). It was highest in grassland and significantly lower in forests and margins
(Figure 3a,b). A peak was reached in summer with a 1.3-fold increase (p < 0.05) compared
to spring, but proportions were also significantly higher in autumn than in spring (1.2-fold
increase) (Figure 3a,b). The proportion of Muridae was lowest in forests. In grassland, it was
1.4-fold increased (p < 0.05), and in margins 2.9-fold (p < 0.05) (Figure 3b). The proportion of
Soricidae did not differ significantly among habitats, but was >15% lower in summer and
autumn than in spring (Figure 3b). The likelihood of absence of Muridae and Soricidae was
higher than for Cricetidae. For Soricidae it was lowest in spring (p < 0.05).
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Table 2. Trap success (captures per 100 TN) and mean (per study site and session) of target and non-target small mammal taxa captured in Ugglan live traps in 28
forest, 8 grassland and 23 margin habitats from four different studies in Germany. Target species in forests and margins were the bank vole (Clethrionomys glareolus)
and the common vole (Microtus arvalis) and in grasslands the common vole (Microtus arvalis). No other vertebrates than small mammals were captured, individuals
that could not be allocated to a species were not considered further. SE—standard error. * Endangered species according to Red List Germany [66].

Taxon Species All Habitats Forest Grassland Margin
N 100 TN Mean (±SE) N 100 TN Mean (±SE) N 100 TN Mean (±SE) N 100 TN Mean (±SE)

Cricetidae 16.65 32.38 (±0.14) 17.00 17.21 (±0.05) 11.26 12.11 (±0.40) 24.04 90.46 (±1.09)
Bank vole

(Clethrionomys glareolus) 13.66 29.46 (±0.15) 15.81 16.59 (±0.06) 0.33 1.68 (±0.28) 14.50 80.50 (±1.24)

Common vole
(Microtus arvalis) 2.82 23.71 (±0.3) 1.09 13.12 (±0.48) 10.56 12.86 (±0.45) 8.91 35.03 (±0.79)

Field vole
(Microtus agrestis) 0.15 2.27 (±0.12) 0.09 1.61 (±0.07) 0.3 4.63 (±2.32) 0.63 3.16 (±0.77)

Microtus spp. 0.01 0.75 (±0.11) 0.01 0.55 (±0.08) 0.06 0.95 (±0.31) 0 0
Edible dormouse

(Glis glis) <0.01 0.41 0.00 0.41 0 0 0 0

Muridae 2.62 21.61 (±0.25) 2.2 4.65 (±0.04) 1.08 4.49 (±0.89) 11.97 59.12 (±1.26)
Yellow-necked mouse
(Apodemus flavicollis) 1.77 21.46 (±0.31) 1.59 4.24 (±0.05) 0.07 1.09 (±0.39) 8.09 54.81 (±1.35)

Long-tailed field mouse
(Apodemus sylvaticus) 0.25 11.9 (±0.33) 0.18 1.58 (±0.05) 0.08 1.84 (±1.01) 1.49 23.72 (±0.85)

Striped field mouse (Apodemus agrarius) 0.24 3.97 (±0.21) 0.14 2.64 (±0.24) 0 0 2.17 7.3 (±0.86)
Apodemus spp. 0.22 2.35 (±0.08) 0.26 2.24 (±0.07) 0.04 0.55 (±0.08) 0.02 11.11

Eurasian harvest mouse *
(Micromys minutus) 0.14 3.24 (±0.51) 0.01 0.68 (±0.08) 0.90 6.80 (±1.94) 0.18 1.23 (±0.36)

House mouse
(Mus musculus) <0.01 1.22 <0.01 1.22 0 0 0 0

House rat
(Rattus rattus) <0.01 6.67 0 0 0 0 0.02 6.67

Muste-
linae

Least weasel
(Mustela
nivalis)

0.02 0.53 (±0.04) 0.02 0.55 (±0.05) 0 0 0.02 0.41

Soricidae 1.19 6.65 (±0.06) 1.03 2.88 (±0.03) 0.92 2.64 (±0.33) 3.98 14.46 (±0.26)
Common shrew
(Sorex araneus) 0.05 19.14 (±0.93) 0 0 0 0 0.92 19.14 (±0.93)

Eurasian pygmy shrew
(Sorex minutus) 0.03 10.26 (±0.34) 0 0.41 0 0 0.41 10.92 (±0.32)

Sorex spp. 1.08 2.88 (±0.03) 1.03 2.87 (±0.03) 0.92 2.64 (±0.33) 2.10 3.15 (±0.17)
Greater white-toothed shrew (Crocidura

russula) 0.03 17.33 (±0.59) 0 0 0 0 0.49 17.33 (±0.59)
Eurasian water shrew *

(Neomys fodiens) 0.01 5.05 (±0.81) < 0.01 0.62 (±0.14) 0 0 0.06 8.00 (±0.00)

Not determined 1.67 6.79 (±0.10) 2.07 6.79 (±0.10) 0 0 0 0

All species 22.14 46.42 (±0.20) 22.32 22.05 (±0.06) 13.27 13.31 (±0.38) 40.02 142.05 (±1.51)
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Table 3. Overall trap success per season (captures per 100 TN) and mean (per study site and session) of target and non-target small mammal taxa captured in Ugglan
live traps in 28 forest, 8 grassland and 23 margin habitats from four different studies in Germany.

Taxon Season
All Habitats Forest Grassland Margins

N 100 TN Mean (±SE) N 100 TN Mean (±SE) N 100 TN Mean (±SE) N 100 TN Mean (±SE)

Cricetidae Spring 11.20 36.79 (±0.49) 10.78 10.87 (±0.15) 1.94 2.12 (±0.18) 33.05 97.94 (±2.24)
Summer 22.25 40.91 (±0.41) 22.94 22.68 (±0.17) 16.20 17.28 (±1.3) 26.49 95.34 (±2.52)
Autumn 15.93 16.50 (±0.12) 16.8 17.44 (±0.14) 13.13 14.01 (±1.07) 9.84 9.27 (±0.84)

Muridae Spring 3.88 45.73 (±0.97) 2.37 4.79 (±0.13) 3.64 10.92 (±3.8) 23.44 99.58 (±2.69)
Summer 1.95 7.77 (±0.14) 2.03 4.38 (±0.11) 0.05 0.41 (±0.00) 4.98 14.61 (±0.5)
Autumn 2.17 4.71 (±0.10) 2.20 4.78 (±0.13) 0.28 0.98 (±0.17) 7.65 7.23 (±0.93)

Mustelinae Spring <0.01 0.41 <0.01 0.41 0 0 0 0
Summer 0.01 0.41 (±0.00) 0.02 0.41 (±0.00) 0 0 0 0
Autumn 0.03 0.65 (±0.11) 0.03 0.72 (±0.15) 0 0 0.07 0.41

Soricidae Spring 0.94 11.51 (±0.28) 0.62 2.31 (±0.11) 0.10 1.22 6.40 18.91 (±0.58)
Summer 1.42 6.18 (±0.12) 1.26 3.43 (±0.13) 1.81 4.83 (±1.39) 2.62 11.27 (±0.43)
Autumn 1.19 2.55 (±0.04) 1.19 2.76 (±0.05) 0.67 1.35 (±0.15) 2.92 2.86 (±0.35)

Incognita Spring 2.02 10.34 (±0.55) 2.46 10.34 (±0.55) 0 0 0 0
Summer 1.05 4.62 (±0.23) 1.31 4.62 (±0.23) 0 0 0 0
Autumn 1.98 6.38 (±0.21) 2.46 6.38 (±0.21) 0 0 0 0

All species Spring 18.03 67.25 (±0.81) 16.23 15.80 (±0.18) 5.68 5.68 (±0.79) 62.90 191.92 (±3.43)
Summer 26.68 47.34 (±0.44) 27.55 27.32 (±0.19) 18.06 18.06 (±1.26) 34.09 107.61 (±2.58)
Autumn 21.29 21.16 (±0.14) 22.67 22.59 (±0.18) 14.08 14.17 (±0.99) 20.48 19.43 (±1.39)
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Figure 2. (a) Mean trap success (captures per 100 trap nights) per taxon, habitat and season in
studies 1 and 2, (b) mean trap success (captures per 100 trap nights) per taxon, habitat and season
in studies 3 and 4. Coloured areas in (a,b) depict the standard error. Means are based on multiple
sites and trapping occasions (coloured dots). Means are presented separately for studies 1–2 and
3–4 to account for the otherwise skewed presentation due to varying study designs. (c) Predicted
trap success by a GLMM with negative binomial family. Coloured areas in (c) depict the confidence
interval of the statistical model. Note the different scales of the y-axes.

Trap success of non-target species (16.4 captures per 100 TN ± 2.1) was on average
approximately half of the trap success of target species (34.0 captures per 100 TN ± 2.9).
Model predictions suggested similar trap success of non-target species for margins, forest
and grassland and for seasons (Figure 4a–c). The absence of non-target species was more
likely in grassland than in forests and in spring than in autumn (p < 0.05) (Figure 4a–c).

The average proportion of non-target species captures was 0.71 (±0.01). The propor-
tion of non-target species captures was 50% higher in margins than in forest (p < 0.05) but
did not differ between grassland and forest (Figure 5a,b). It was 100% higher in spring than
in summer (p < 0.05) and 30% lower in autumn than in spring (Figure 5a,b) (p < 0.05).
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The occurrence of endangered species (Micromys minutus and Neomys fodiens) 
trapped in the studies was too scarce for a thorough statistical analysis. Available data 
suggest an increased presence of endangered species in grassland compared to margins 
(3.2-fold increase) and forests (54-fold increase) (Figure 6a) and higher trap success in 
spring compared to summer (1.75-fold increase) and autumn (4.3-fold increase) (Figure 
6a). Similarly, the proportion of endangered species seemed highest in grassland and in 
spring (Figure 6b). 

Figure 4. (a) Mean trap success of non-target captures (captures per 100 trap nights) per habitat and
season in studies 1 and 2, (b) mean trap success of non-target captures (captures per 100 trap nights)
per habitat and season in studies 3 and 4. Coloured areas in (a,b) depict the standard error. Means are
based on multiple sites and trapping occasions (coloured dots). Means are presented separately for
studies 1–2 and 3–4 to account for the otherwise skewed presentation due to different study designs.
(c) Predicted trap success with a GLMM with negative binomial family. Coloured areas in (c) depict
the confidence interval of the statistical model. Note the different scales of the y-axes.
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(b) predicted proportion of non-target species by GLMM with binomial family. Coloured areas in (b)
depict the confidence interval of the statistical model.

The occurrence of endangered species (Micromys minutus and Neomys fodiens) trapped
in the studies was too scarce for a thorough statistical analysis. Available data suggest an
increased presence of endangered species in grassland compared to margins (3.2-fold in-
crease) and forests (54-fold increase) (Figure 6a) and higher trap success in spring compared
to summer (1.75-fold increase) and autumn (4.3-fold increase) (Figure 6a). Similarly, the
proportion of endangered species seemed highest in grassland and in spring (Figure 6b).
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areas in (b) depict the standard error. Means are based on multiple sites and trapping occasions
(coloured dots). Note the different scales of the y-axes.
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4. Discussion

To our knowledge, this is the first attempt to investigate live trapping data from
central Europe regarding the distribution of captures of target and non-target taxa across
habitats, Red List status and season. The study shows that, overall, about a third of live
trapped small mammals were bycatch. This is not surprising because the small mammal
composition of central European deciduous forests comprises a variety of small mammal
species [71] dominated by bank voles and Apodemus species [72,73]. The same is true for
open landscape habitats adjacent to hedgerows, forests and human settlements, where
common voles are most prevalent [74,75].

The considerable proportion of non-target animals in standard live trapping is un-
wanted but less worrying than in kill trapping because animals can be released. However,
there can be mortality in small mammals trapped alive [32,33]. Bycatch is also known from
trapping programs of other taxa such as invertebrates [76,77] and birds [78]. Insect bycatch
can be reduced using species-specific pheromones as lures [79] and specific birds such as
starlings (Sturnus vulgaris) can be attracted by placing a conspecific individual close to
the trapping device or using species-specific bird calls [80]. Species-specificity cannot be
achieved with Ugglan traps considered here or with other standard live traps used in small
mammal research such as Longworth traps or Sherman traps because they all, by design,
capture all animals small enough to pass through the trap’s entrance [39,81].

Generally, the trap success of non-target taxa was higher in forest versus margins and
grassland and higher in spring than summer or autumn. Naturally, the more restricted
the number of target species, the higher the proportion of non-target species trapped. We
have used an extreme approach focussing on only 1–2 target species in each habitat, albeit
rather common ones. Therefore, the proportion of non-target species we report is likely to
be drastically reduced when several species are targets.

Habitat mattered for bycatch because trap success of non-target species was higher in
margins than in forest habitats. This finding seems plausible as in central Europe, open
agricultural habitats including grassland that stretch far between margins are of poor small
mammal diversity. Grassland tends to host the common vole as the main species with few
other small mammals present [75,82]. The woody plants and shrubs in margins provide
more complex horizontal and vertical structures that can be a suitable habitat or provide a
dispersal corridor for several small mammal species [71,83]. Non-targets were obviously
attracted to the live traps at habitat interfaces, leading to an elevated proportion in margins.

Seasonally, the proportion of non-target taxa was highest in spring independent of
habitat. Several factors may have caused this result. Spring temperatures are lower than in
summer and autumn [84], body condition after winter tends to be low [85,86] and age of
animals high [87], which may all cause increased need for food uptake. However, in spring,
food availability is low. This could have caused non-target species more than target species
to utilise bait in traps more intensely than they might do in other seasons. Such species
may also tolerate the (previous) presence of other species in and around traps in spring
more than in other seasons [88,89]. Additionally, limited food supply in spring may prompt
non-target species to accept potential predation risk associated with increasing home rages
and approaching traps in an otherwise less preferred landscape of risk [90,91]. All this
could result in increased captures of non-target species but this needs to be validated in
future work.

We used data from previous studies that were not designed a priori to assess bycatch
and therefore were slightly different in bait used, trapping schedule and trap type. However,
the large numbers of trap nights and captures yielded a robust indication where main non-
target issues can occur. It seems unrealistic to run similarly large live trapping campaigns
solely dedicated to an assessment of bycatch but there may be the opportunity to include
information from further studies (other trap types, habitats, species) in the future.

Most bycatch consisted of taxa not considered endangered. This reflects that endan-
gered species are rare and therefore rarely encountered. There were two species (Eurasian
water shrew, Eurasian harvest mouse) trapped that have an early warning status according
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to the Red List Germany (https://www.rote-liste-zentrum.de/en/Download-Vertebrates-
1874.html accessed on 20 December 2021) [66]. The trap success of Eurasian water shrews
was the lowest of all species (0.0001 captures per 100 TN) and Eurasian harvest mice
occurred in <4% of trapping sessions. Similar to all non-target captures, the seasonal
dynamics of the proportion of endangered non-target taxa seemed highest in spring and
higher in forests. This indicates that endangered species follow the same capture patterns
and seem to utilise traps similar to all non-target species.

There are techniques available to minimise bycatch including bait that is attractive
to the target and unattractive to the non-target species. However, many rodent species
seem to prefer similar bait or similar bait properties [92,93], which makes it difficult to use
a species-specific attractant, but see [36,94]. Trap placement on runways or close to the
burrows of target species might limit bycatch but interferes with standardised trapping
grids or transect designs. The size of the trap entrance can be minimised to reflect the body
size of the target species to exclude all larger taxa. Trap placement away from instead of
along margins/habitat interfaces is likely to minimise bycatch but the purpose of the study
may require trapping in such locations. Trap sensors are available to indicate capture and
they can be used to allow swift removal of trapped animals [44] instead of relying on a fixed
trap check frequency. Any method to minimise bycatch needs to be evaluated carefully to
make sure that there is no interference with the purpose of the study to guarantee valid
result; this is paramount for scientific work. In addition, while maintaining the desired
level of animal protection, methods need to be feasible economically regarding workload.
This balance might be difficult to find.

5. Conclusions

The result presented here can be used to apply protective measures in a targeted
fashion and to exclude periods when captures of non-targets and especially endangered
species are less probable. Particular attention needs to be paid when trapping in spring
along margins if all non-target taxa are to be avoided. For minimising the number and
proportion of endangered species, trapping in grassland in spring seems most critical. These
times and periods are likely to change when other species are targeted than in this study.

Further parameters potentially related to the risk of trapping non-target species and
the risk of mortality of small mammals in traps include temperature, day/night activity and
inter-specific competition. Comprehensive data from previous studies should be available
to assess such effects and results could be used to further fine-tune measures to minimise
the number, proportion and mortality of non-target taxa in live trapping.
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